Binary Tree All Operations as pseudocode

Tree Structure Each node x has these attributes: x.key: key stored in the node x.p: pointer to the parent node x.left: pointer to the left child x.right: pointer to the right child A tree T has: T.root: pointer to the root node Algorithms 1. Inorder Tree Walk Input: x (pointer to a node in the binary search tree) Output: None (prints keys in order) 1. If x ≠ null 2. Inorder-tree-walk(x.left) 3. Print x.key 4. Inorder-tree-walk(x.right) 2. Tree Search (Recursive) Input: x (pointer to subtree root), k (key to search) Output: Pointer to node with key k (or null if not found) 1. If x == null or k == x.key 2. Return x 3. If k < x.key 4. Return tree-search(x.left, k) 5. Else 6. Return tree-search(x.right, k) 3. Iterative Tree Search Input: x (pointer to subtree root), k (key to search) Output: Pointer to node with key k (or null if not found) 1. While x ≠ null and k ≠ x.key 2. If k < x.key 3. x = x.left 4. Else 5. x = x.right 6. Return x 4. Tree Minimum Input: x (pointer to non-null node) Output: Pointer to node with minimum key in the subtree 1. While x.left ≠ null 2. x = x.left 3. Return x 5. Tree Maximum Input: x (pointer to non-null node) Output: Pointer to node with maximum key in the subtree 1. While x.right ≠ null 2. x = x.right 3. Return x 6. Tree Insert Input: t (binary search tree), z (node to insert) Output: None (modifies tree by inserting z) 1. y = null 2. x = t.root 3. While x ≠ null 4. y = x 5. If z.key < x.key 6. x = x.left 7. Else 8. x = x.right 9. z.p = y 10. If y == null 11. t.root = z 12. Elseif z.key < y.key 13. y.left = z 14. Else 15. y.right = z 7. Transplant (Helper for Delete) Input: t (binary search tree), u (subtree to replace), v (replacing subtree) Output: None (modifies tree) 1. If u.p == null 2. t.root = v 3. Elseif u == u.p.left 4. u.p.left = v 5. Else 6. u.p.right = v 7. If v ≠ null 8. v.p = u.p 8. Tree Delete Input: t (binary search tree), z (node to delete) Output: None (modifies tree) 1. If z.left == null 2. Transplant(t, z, z.right) 3. Elseif z.right == null 4. Transplant(t, z, z.left) 5. Else 6. y = tree-minimum(z.right) 7. If y.p ≠ z 8. Transplant(t, y, y.right) 9. y.right = z.right 10. y.right.p = y 11. Transplant(t, z, y) 12. y.left = z.left 13. y.left.p = y Additional Tree Operations Size Input: T (binary tree) Output: Number of nodes in the tree 1. If T.root == Null 2. Return 0 3. count = 0 4. sizeHelper(T.root, count) 5. Return count Other Basic Operations isEmpty(): Returns true if tree is empty root(): Returns the root node parent(v): Returns parent of node v children(v): Returns list of children of node v leftChild(v): Returns left child of node v rightChild(v): Returns right child of node v sibling(v): Returns sibling of node v Traversal Algorithms Preorder Traversal Input: v (node) Output: None 1. If v == Null 2. Return 3. Visit v 4. If isInternal(v) 5. preorder(v.left) 6. preorder(v.right) Postorder Traversal Input: v (node) Output: None 1. If v == Null 2. Return 3. If isInternal(v) 4. postorder(v.left) 5. postorder(v.right) 6. Visit v Inorder Traversal Input: v (node) Output: None 1. If v == Null 2. Return 3. If v.left ≠ Null 4. inorder(v.left) 5. Visit v 6. If v.right ≠ Null 7. inorder(v.right) Euler Tour Traversal Input: v (node) Output: None 1. If v == null 2. Return 3. visitBeforeSubtrees(v) 4. If isInternal(v) 5. If v.left ≠ Null 6. eulerTour(v.left) 7. visitBetweenSubtrees(v) 8. If v.right ≠ Null 9. eulerTour(v.right) 10. visitAfterSubtrees(v) Time Complexity Summary Operation Time Complexity Inorder Walk O(n) Tree Search O(h) Tree Insert O(h) Tree Delete O(h) Size O(n) Traversals O(n) Note: h = height of the tree, n = number of nodes Euler Tour Example The Euler Tour captures all tree traversal information in a single walk: Each node is visited exactly 3 times Combines preorder, inorder, and postorder traversals Example Tree Expression The Euler Tour can help evaluate complex tree expressions: ((3+1)×(9−5))−(3×(7−4)+6) This demonstrates how Euler Tour can be used to systematically process and evaluate tree-based mathematical expressions. Binary Search Tree Operations Complexity Table Operation Time Complexity (Big-O) inorder-tree-walk O(n) tree-search O(h) iterative-tree-search O(h) tree-minimum O(h) tree-maximum O(h) tree-insert O(h) tree-delete O(h) transplant O(1) size O(n) isEmpty O(1) root O(1) parent O(1) children O(1) leftChild O(1) rightChild O(1) sibling O(1) isIn

Apr 5, 2025 - 09:40
 0
Binary Tree All Operations as pseudocode

Tree Structure

Each node x has these attributes:

  • x.key: key stored in the node
  • x.p: pointer to the parent node
  • x.left: pointer to the left child
  • x.right: pointer to the right child

A tree T has:

  • T.root: pointer to the root node

Algorithms

1. Inorder Tree Walk

Input: x (pointer to a node in the binary search tree)
Output: None (prints keys in order)

1. If x ≠ null
2.   Inorder-tree-walk(x.left)
3.   Print x.key
4.   Inorder-tree-walk(x.right)

2. Tree Search (Recursive)

Input: x (pointer to subtree root), k (key to search)
Output: Pointer to node with key k (or null if not found)

1. If x == null or k == x.key
2.   Return x
3. If k < x.key
4.   Return tree-search(x.left, k)
5. Else 
6.   Return tree-search(x.right, k)

3. Iterative Tree Search

Input: x (pointer to subtree root), k (key to search)
Output: Pointer to node with key k (or null if not found)

1. While x ≠ null and k ≠ x.key
2.   If k < x.key
3.     x = x.left
4.   Else 
5.     x = x.right
6. Return x

4. Tree Minimum

Input: x (pointer to non-null node)
Output: Pointer to node with minimum key in the subtree

1. While x.left ≠ null
2.   x = x.left
3. Return x

5. Tree Maximum

Input: x (pointer to non-null node)
Output: Pointer to node with maximum key in the subtree

1. While x.right ≠ null
2.   x = x.right
3. Return x

6. Tree Insert

Input: t (binary search tree), z (node to insert)
Output: None (modifies tree by inserting z)

1. y = null
2. x = t.root
3. While x ≠ null
4.   y = x
5.   If z.key < x.key
6.     x = x.left
7.   Else 
8.     x = x.right
9. z.p = y
10. If y == null
11.   t.root = z
12. Elseif z.key < y.key
13.   y.left = z
14. Else 
15.   y.right = z

7. Transplant (Helper for Delete)

Input: t (binary search tree), u (subtree to replace), v (replacing subtree)
Output: None (modifies tree)

1. If u.p == null
2.   t.root = v
3. Elseif u == u.p.left
4.   u.p.left = v
5. Else 
6.   u.p.right = v
7. If v ≠ null
8.   v.p = u.p

8. Tree Delete

Input: t (binary search tree), z (node to delete)
Output: None (modifies tree)

1. If z.left == null
2.   Transplant(t, z, z.right)
3. Elseif z.right == null
4.   Transplant(t, z, z.left)
5. Else
6.   y = tree-minimum(z.right)
7.   If y.p ≠ z
8.     Transplant(t, y, y.right)
9.     y.right = z.right
10.    y.right.p = y
11.    Transplant(t, z, y)
12.    y.left = z.left
13.    y.left.p = y

Additional Tree Operations

Size

Input: T (binary tree)
Output: Number of nodes in the tree

1. If T.root == Null
2.   Return 0
3. count = 0
4. sizeHelper(T.root, count)
5. Return count

Other Basic Operations

  • isEmpty(): Returns true if tree is empty
  • root(): Returns the root node
  • parent(v): Returns parent of node v
  • children(v): Returns list of children of node v
  • leftChild(v): Returns left child of node v
  • rightChild(v): Returns right child of node v
  • sibling(v): Returns sibling of node v

Traversal Algorithms

Preorder Traversal

Input: v (node)
Output: None

1. If v == Null
2.   Return
3. Visit v
4. If isInternal(v)
5.   preorder(v.left)
6.   preorder(v.right)

Postorder Traversal

Input: v (node)
Output: None

1. If v == Null
2.   Return
3. If isInternal(v)
4.   postorder(v.left)
5.   postorder(v.right)
6. Visit v

Inorder Traversal

Input: v (node)
Output: None

1. If v == Null
2.   Return
3. If v.left ≠ Null
4.   inorder(v.left)
5. Visit v
6. If v.right ≠ Null
7.   inorder(v.right)

Euler Tour Traversal

Input: v (node)
Output: None

1. If v == null
2.   Return
3. visitBeforeSubtrees(v)
4. If isInternal(v)
5.   If v.left ≠ Null
6.     eulerTour(v.left)
7.   visitBetweenSubtrees(v)
8.   If v.right ≠ Null
9.     eulerTour(v.right)
10. visitAfterSubtrees(v)

Time Complexity Summary

Operation Time Complexity
Inorder Walk O(n)
Tree Search O(h)
Tree Insert O(h)
Tree Delete O(h)
Size O(n)
Traversals O(n)

Note: h = height of the tree, n = number of nodes

Euler Tour Example

The Euler Tour captures all tree traversal information in a single walk:

  • Each node is visited exactly 3 times
  • Combines preorder, inorder, and postorder traversals

Example Tree Expression

The Euler Tour can help evaluate complex tree expressions:

((3+1)×(9−5))−(3×(7−4)+6)

This demonstrates how Euler Tour can be used to systematically process and evaluate tree-based mathematical expressions.

Binary Search Tree Operations Complexity Table

Operation Time Complexity (Big-O)
inorder-tree-walk O(n)
tree-search O(h)
iterative-tree-search O(h)
tree-minimum O(h)
tree-maximum O(h)
tree-insert O(h)
tree-delete O(h)
transplant O(1)
size O(n)
isEmpty O(1)
root O(1)
parent O(1)
children O(1)
leftChild O(1)
rightChild O(1)
sibling O(1)
isInternal O(1)
isExternal O(1)
isRoot O(1)
preorder O(n)
postorder O(n)
inorder O(n)
eulerTour O(n)

Euler Tour Example with Larger Tree

Euler Tour traversal sequence for a tree with 3 layers:
Image description

  1. A (first visit)
  2. B (first visit)
  3. D (first visit)
  4. H (first visit)
  5. H (second visit) - no children
  6. H (third visit)
  7. D (second visit)
  8. I (first visit)
  9. I (second visit) - no children
  10. I (third visit)
  11. D (third visit)
  12. B (second visit)
  13. E (first visit)
  14. J (first visit)
  15. J (second visit) - no children
  16. J (third visit)
  17. E (second visit) - E has no right child
  18. E (third visit)
  19. B (third visit)
  20. A (second visit)
  21. C (first visit)
  22. F (first visit)
  23. F (second visit) - no children
  24. F (third visit)
  25. C (second visit)
  26. G (first visit)
  27. G (second visit) - no children
  28. G (third visit)
  29. C (third visit)
  30. A (third visit)

Note: Each node is visited exactly 3 times, creating a complete "tour" around the tree that captures all the information from preorder, inorder, and postorder traversals in a single walk.

Mathematical Expression Using Euler Tour Algorithm

Image description

Q: What is the mathematical expression for this tree when using the Euler Tour algorithm?

Solution:

  1. Start with the left subtree of the root (-):

    • Left subtree of ×: (3 + 1)
    • Right subtree of ×: (9 - 5)
    • Combine: (3 + 1) × (9 - 5)
  2. Move to the right subtree of the root (-):

    • Left subtree of +: 3 × (7 - 4)
    • Right subtree of +: 6
    • Combine: 3 × (7 - 4) + 6
  3. Combine the results from the left and right subtrees of the root:

    • Left: (3 + 1) × (9 - 5)
    • Right: 3 × (7 - 4) + 6
    • Combine: ((3 + 1) × (9 - 5)) - (3 × (7 - 4) + 6)

Final Answer:
The mathematical expression represented by the tree is:

((3+1)×(9−5))−(3×(7−4)+6) => ((4)×(4))−(3×(3)+6) = 16 − (3×3 + 6) = 16 − (9 + 6) = 16 − 15 = 1